0=x^2+72x-3120

Simple and best practice solution for 0=x^2+72x-3120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=x^2+72x-3120 equation:



0=x^2+72x-3120
We move all terms to the left:
0-(x^2+72x-3120)=0
We add all the numbers together, and all the variables
-(x^2+72x-3120)=0
We get rid of parentheses
-x^2-72x+3120=0
We add all the numbers together, and all the variables
-1x^2-72x+3120=0
a = -1; b = -72; c = +3120;
Δ = b2-4ac
Δ = -722-4·(-1)·3120
Δ = 17664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17664}=\sqrt{256*69}=\sqrt{256}*\sqrt{69}=16\sqrt{69}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-16\sqrt{69}}{2*-1}=\frac{72-16\sqrt{69}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+16\sqrt{69}}{2*-1}=\frac{72+16\sqrt{69}}{-2} $

See similar equations:

| -3k+8=32 | | 2x+3x−4=6 | | -n-6=-30 | | 0.04w=1.4 | | 9x(4x-6)=17+2(3x+8) | | -6=1-3x-4x | | 3=-3(x-9) | | (8x+6)+(7x+24)=180 | | 4(2x-1)=x-3 | | 55=17^(x) | | 10x+1=15x-9 | | Y=0.1-0.005x6 | | (6x+3)=90 | | 10+8r=2r-14 | | -5x+6+4x=3x+2(4x-2) | | -12=4(n-1) | | 3x-8x+2=x-3=5 | | h/7+4=15 | | 4z+z-1=9 | | -6.5=p-3.9 | | 9(2x−3)+5x+17=-4x-10 | | 9(11-n)=3(3n-9) | | 0=12x-600 | | 14x-10=9x | | 2(x+5)=6x−2 | | -7=2j | | a-(4)=-28 | | 21=13+x | | x/4=28/7 | | n/13=8/13 | | -21=-9+b | | 6=f+54/24 |

Equations solver categories